Copied to
clipboard

G = C22×C4⋊D4order 128 = 27

Direct product of C22 and C4⋊D4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C22×C4⋊D4, C2414D4, C25.68C22, C23.11C24, C22.21C25, C24.606C23, (C24×C4)⋊8C2, C43(C22×D4), C238(C2×D4), C4⋊C413C23, (C22×C4)⋊55D4, C2.5(D4×C23), (D4×C23)⋊10C2, (C2×D4)⋊14C23, C221(C22×D4), C22⋊C415C23, (C2×C4).596C24, (C23×C4)⋊59C22, (C22×C4)⋊24C23, (C22×D4)⋊57C22, C23.377(C4○D4), (C2×C4)⋊21(C2×D4), (C22×C4⋊C4)⋊37C2, C2.5(C22×C4○D4), (C2×C4⋊C4)⋊122C22, (C22×C22⋊C4)⋊27C2, (C2×C22⋊C4)⋊81C22, C22.146(C2×C4○D4), SmallGroup(128,2164)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C22×C4⋊D4
C1C2C22C23C24C25C24×C4 — C22×C4⋊D4
C1C22 — C22×C4⋊D4
C1C24 — C22×C4⋊D4
C1C22 — C22×C4⋊D4

Generators and relations for C22×C4⋊D4
 G = < a,b,c,d,e | a2=b2=c4=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 2188 in 1264 conjugacy classes, 516 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C23×C4, C23×C4, C23×C4, C22×D4, C22×D4, C25, C25, C22×C22⋊C4, C22×C4⋊C4, C2×C4⋊D4, C24×C4, D4×C23, D4×C23, C22×C4⋊D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C22×D4, C2×C4○D4, C25, C2×C4⋊D4, D4×C23, C22×C4○D4, C22×C4⋊D4

Smallest permutation representation of C22×C4⋊D4
On 64 points
Generators in S64
(1 29)(2 30)(3 31)(4 32)(5 23)(6 24)(7 21)(8 22)(9 59)(10 60)(11 57)(12 58)(13 19)(14 20)(15 17)(16 18)(25 42)(26 43)(27 44)(28 41)(33 56)(34 53)(35 54)(36 55)(37 63)(38 64)(39 61)(40 62)(45 51)(46 52)(47 49)(48 50)
(1 47)(2 48)(3 45)(4 46)(5 9)(6 10)(7 11)(8 12)(13 36)(14 33)(15 34)(16 35)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(25 37)(26 38)(27 39)(28 40)(29 49)(30 50)(31 51)(32 52)(41 62)(42 63)(43 64)(44 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 27 55 59)(2 26 56 58)(3 25 53 57)(4 28 54 60)(5 49 61 13)(6 52 62 16)(7 51 63 15)(8 50 64 14)(9 29 44 36)(10 32 41 35)(11 31 42 34)(12 30 43 33)(17 21 45 37)(18 24 46 40)(19 23 47 39)(20 22 48 38)
(2 4)(5 61)(6 64)(7 63)(8 62)(9 44)(10 43)(11 42)(12 41)(14 16)(18 20)(21 37)(22 40)(23 39)(24 38)(25 57)(26 60)(27 59)(28 58)(30 32)(33 35)(46 48)(50 52)(54 56)

G:=sub<Sym(64)| (1,29)(2,30)(3,31)(4,32)(5,23)(6,24)(7,21)(8,22)(9,59)(10,60)(11,57)(12,58)(13,19)(14,20)(15,17)(16,18)(25,42)(26,43)(27,44)(28,41)(33,56)(34,53)(35,54)(36,55)(37,63)(38,64)(39,61)(40,62)(45,51)(46,52)(47,49)(48,50), (1,47)(2,48)(3,45)(4,46)(5,9)(6,10)(7,11)(8,12)(13,36)(14,33)(15,34)(16,35)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,37)(26,38)(27,39)(28,40)(29,49)(30,50)(31,51)(32,52)(41,62)(42,63)(43,64)(44,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,27,55,59)(2,26,56,58)(3,25,53,57)(4,28,54,60)(5,49,61,13)(6,52,62,16)(7,51,63,15)(8,50,64,14)(9,29,44,36)(10,32,41,35)(11,31,42,34)(12,30,43,33)(17,21,45,37)(18,24,46,40)(19,23,47,39)(20,22,48,38), (2,4)(5,61)(6,64)(7,63)(8,62)(9,44)(10,43)(11,42)(12,41)(14,16)(18,20)(21,37)(22,40)(23,39)(24,38)(25,57)(26,60)(27,59)(28,58)(30,32)(33,35)(46,48)(50,52)(54,56)>;

G:=Group( (1,29)(2,30)(3,31)(4,32)(5,23)(6,24)(7,21)(8,22)(9,59)(10,60)(11,57)(12,58)(13,19)(14,20)(15,17)(16,18)(25,42)(26,43)(27,44)(28,41)(33,56)(34,53)(35,54)(36,55)(37,63)(38,64)(39,61)(40,62)(45,51)(46,52)(47,49)(48,50), (1,47)(2,48)(3,45)(4,46)(5,9)(6,10)(7,11)(8,12)(13,36)(14,33)(15,34)(16,35)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,37)(26,38)(27,39)(28,40)(29,49)(30,50)(31,51)(32,52)(41,62)(42,63)(43,64)(44,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,27,55,59)(2,26,56,58)(3,25,53,57)(4,28,54,60)(5,49,61,13)(6,52,62,16)(7,51,63,15)(8,50,64,14)(9,29,44,36)(10,32,41,35)(11,31,42,34)(12,30,43,33)(17,21,45,37)(18,24,46,40)(19,23,47,39)(20,22,48,38), (2,4)(5,61)(6,64)(7,63)(8,62)(9,44)(10,43)(11,42)(12,41)(14,16)(18,20)(21,37)(22,40)(23,39)(24,38)(25,57)(26,60)(27,59)(28,58)(30,32)(33,35)(46,48)(50,52)(54,56) );

G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,23),(6,24),(7,21),(8,22),(9,59),(10,60),(11,57),(12,58),(13,19),(14,20),(15,17),(16,18),(25,42),(26,43),(27,44),(28,41),(33,56),(34,53),(35,54),(36,55),(37,63),(38,64),(39,61),(40,62),(45,51),(46,52),(47,49),(48,50)], [(1,47),(2,48),(3,45),(4,46),(5,9),(6,10),(7,11),(8,12),(13,36),(14,33),(15,34),(16,35),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(25,37),(26,38),(27,39),(28,40),(29,49),(30,50),(31,51),(32,52),(41,62),(42,63),(43,64),(44,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,27,55,59),(2,26,56,58),(3,25,53,57),(4,28,54,60),(5,49,61,13),(6,52,62,16),(7,51,63,15),(8,50,64,14),(9,29,44,36),(10,32,41,35),(11,31,42,34),(12,30,43,33),(17,21,45,37),(18,24,46,40),(19,23,47,39),(20,22,48,38)], [(2,4),(5,61),(6,64),(7,63),(8,62),(9,44),(10,43),(11,42),(12,41),(14,16),(18,20),(21,37),(22,40),(23,39),(24,38),(25,57),(26,60),(27,59),(28,58),(30,32),(33,35),(46,48),(50,52),(54,56)]])

56 conjugacy classes

class 1 2A···2O2P···2W2X···2AE4A···4P4Q···4X
order12···22···22···24···44···4
size11···12···24···42···24···4

56 irreducible representations

dim111111222
type++++++++
imageC1C2C2C2C2C2D4D4C4○D4
kernelC22×C4⋊D4C22×C22⋊C4C22×C4⋊C4C2×C4⋊D4C24×C4D4×C23C22×C4C24C23
# reps1212413888

Matrix representation of C22×C4⋊D4 in GL7(𝔽5)

4000000
0100000
0010000
0004000
0000400
0000010
0000001
,
4000000
0400000
0040000
0004000
0000400
0000010
0000001
,
4000000
0300000
0420000
0003100
0000200
0000043
0000011
,
1000000
0440000
0210000
0001200
0004400
0000040
0000011
,
4000000
0110000
0040000
0001000
0004400
0000010
0000044

G:=sub<GL(7,GF(5))| [4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4,1,0,0,0,0,0,3,1],[1,0,0,0,0,0,0,0,4,2,0,0,0,0,0,4,1,0,0,0,0,0,0,0,1,4,0,0,0,0,0,2,4,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,4] >;

C22×C4⋊D4 in GAP, Magma, Sage, TeX

C_2^2\times C_4\rtimes D_4
% in TeX

G:=Group("C2^2xC4:D4");
// GroupNames label

G:=SmallGroup(128,2164);
// by ID

G=gap.SmallGroup(128,2164);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,477,232,1430]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽